Readers may be familiar with Harvard physicist Eric Mazur's ConcepTests, which have been shown to enhance substantially the comprehension of introductory physics concepts. Briefly, conceptual questions are posed in the lecture room along with a few possible answers. Students vote on the possible answers, then try to persuade their neighbors in the lecture room that they are correct, and finally vote again. This form of peer instruction is often an effective pedagogical method, and it also provides the instructor with on-line feedback as to how well the class is following the lecture.

Answers are in bold typeface.

Atoms, Molecules, Extended Structures, and Stoichiometry

1. (Vapor pressure) Demonstration: Drops of water and ethanol are placed on an overhead projector and the ethanol drop is seen to evaporate more rapidly. The graph below compares the vapor pressures of ethanol and water. Which curve corresponds to ethanol?

![Graph showing vapor pressure vs temperature with curves A and B, where A corresponds to ethanol and B to water.](image-url)
2. (Unit cells; Ch. 3 "Companion") Which of the parallelograms in the figure below are unit cells?

- A, B, C, D, E

After a unit cell is identified: What number of atoms belong to the unit cell?

1, 2, other

Equilibrium

3. (Equilibrium, concentration, competition) When people are exposed to higher than normal concentrations of CO, CO can displace O₂ from the hemeoglobin (Hb) and eventually cause death. A competition experiment involves O₂ and CO vying for hemoglobin (Hb) sites, defined by the equilibrium

\[
\text{Hb(O}_2\text{)}_4 + 4 \text{ CO} \rightleftharpoons \text{Hb(CO)}_4 + 4\text{O}_2
\]

From Le Châtelier's principle, how is CO poisoning reversed?

- decrease O₂ pressure, **increase O₂ pressure**, remove Hb

4. (Equilibrium, Le Châtelier's principle; Ch. 5 & 9 "Companion") The body-centered cubic (bcc) phase of a metal has a 68% packing efficiency, while the face-centered cubic (fcc) phase of the same metal has a 74% packing efficiency. For the equilibrium

\[
\text{bcc metal} \rightleftharpoons \text{fcc metal}
\]

as pressure increases, the equilibrium

- shifts to the left, **shifts to the right**, is unaffected

5. (pH scale) Recall that pH = - \log[H⁺]. A solution with pH = 5 is 100 times more acidic than a solution with a pH = ?

- 7, 3, 0.05
6. (Weak acids, Le Châtelier's principle) For the reaction, CH₃COOH = CH₃COO⁻ + H⁺, pKₐ = 5. Recall that pKₐ = -logKₐ and pH = pKₐ - log[base]/[acid].

At pH = 5, what is the most prevalent species?

CH₃COOH, CH₃COO⁻, equal amounts of the acid and its conjugate base

At pH = 2, what is the most prevalent species?

CH₃COOH, CH₃COO⁻, equal amounts of the acid and its conjugate base

The plot below show the concentrations of CH₃COOH and CH₃COO⁻ as a function of pH. Which plot corresponds to the concentration of acetic acid, CH₃COOH, as a function of pH?

A, B

Chemical Reactions, Acid-Base, Redox, Precipitation
7. (Amino acid sequences) Amino acids are joined by peptide bonds formed through condensation reactions. Is the compound gly-ala the same as ala-gly?

yes, no
8. (Galvanic cells, redox, Le Châtelier's principle)

\[
\begin{align*}
\text{Ag}^+(aq) + e^- &\rightarrow \text{Ag}(s) \quad E^\circ = 0.80 \text{ V} \\
\text{Cu}^{2+}(aq) + 2e^- &\rightarrow \text{Cu}(s) \quad E^\circ = 0.34 \text{ V}
\end{align*}
\]

Will Ag(s) react with Cu\(^{2+}\)(aq)?

\text{yes, no}

Will Cu(s) react with Ag\(^+(aq)\)?

\text{yes, no}

Demonstration: \(\text{Cu}(s) + 2\text{Ag}^+(aq) \rightarrow \text{Cu}^{2+}(aq) + 2\text{Ag}(s)\) Place a sheet of copper into a AgNO\(_3\) solution. The submerged copper electrode will be plated with silver at the end of the reaction.

Demonstration: Construct a galvanic cell: \(\text{Cu}(s)|\text{Cu}^{2+}(aq)||\text{Ag}^+(aq)|\text{Ag}(s)\) Measure the voltage.

If water is added to the Cu\(^{2+}\)(aq) cell, how will the voltage be affected?

\text{voltage will increase, voltage will decrease, no change}

If a Cl\(^-\) solution is added to the Ag\(^+(aq)\) half cell to precipitate AgCl(s), how will the voltage be affected?

\text{voltage will increase, voltage will decrease, no change}

As current passes, the voltage

\text{increases, decreases, stays constant}

9. (Isotopes, Half-life) The half-life of \(^{238}\text{U}\) is \(4.5 \times 10^9\) years; that of \(^{235}\text{U}\) is \(7.1 \times 10^8\) years. If at the moment of the birth of the universe there were equal amounts of \(^{238}\text{U}\) and \(^{235}\text{U}\), which isotope is now in excess?

\text{\(^{235}\text{U}, \(^{238}\text{U}\), still equal amounts}

Referring to the graph below, which line represents the decay of \(^{238}\text{U}\), as opposed to that of \(^{235}\text{U}\)?

\text{A, B}