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Abstract

The research monograph begins with a discussion of the roles of science in the political world
and, borrowing from Shakley and Wynne (1996),  describes some different relationships which
can exist between science and policy. It argues that education systemic reform (ESR)
constitutes a novel approach to educational reform, about which little is known, and about
which much is yet to be discovered. ESR requires “abracadabra” science, in the language of
Shakley and Wynne. To be consistent with the philosophy of ESR, the evaluation of ESR must
be an evaluation of systems undergoing change, and so evaluation itself also requires a good
deal of abracadabra science.

The monograph describes three styles of modeling in science: analytic modeling, exemplified by
eighteenth century physics; systems modeling, exemplified by biology; and macro-systemic
modeling, exemplified by studies of ecologies undergoing change. Each modeling style depends
on and incorporates its predecessor. The dominant intellectual traditions in education have been
analytic, rather than systemic. The emergence of systemic  reform as a paradigm for educational
change has created a need for approaches to educational evaluation that set out to judge the
functioning of systems; this will require attention to each of the major phases of evaluation-the
evaluation of plans about some new system, the evaluation of the implementation of the plans,
and the provision of summative feedback about its success or otherwise. However, systemic
reform requires more than just an understanding of systems; rather, it requires an understanding
of systems undergoing change. It follows that the evaluation of education systemic reform
requires the evaluation o:f macro-systemic change. Several disciplines outside education have
systemic and macro-systemic approaches as their dominant intellectual traditions. This
monograph considers the approaches taken to evaluation and inquiry in some of these
disciplines, notably epidemiology and ecology, and the central roles that evaluation plays in
planning and monitoring change.

From a description of the methods used in other disciplines, a specification of the evidence base
needed to conduct evaluations of ESR is derived. Attention is given to some of the research
styles from a number of different academic disciplines (including physics and earth sciences)
that face the same problems as those faced by education in terms of handling complexity. Some
ideas on data gathering, modeling, and strategies for further research into educational evaluation
are presented.

The monograph points out the importance of making full use of existing knowledge and the
knowledge that the evaluation community is rapidly creating. It endorses arguments made by
Wilson (1994) and Striven  (1993) that there is a pressing need for an intellectual community to
emerge that addresses the issues of the management and evaluation of systems undergoing
change.

vii



Introduction

The National Science Foundation (NSF) has spent very large sums of money on education and
has promoted a vision of systemic reform. The 1993 Government Performance and Results Act
(GPRA; P.L. 103-62) decreed that, by 1999, all agencies show that they have measurable
objectives and that these are being met. It follows that NSF must evaluate the whole program of
education systemic reform (ESR), using objective measures, a task that may prove to be
problematic. ESR is a complex business with long term goals; it is not at all clear how such an
initiative might be evaluated.

ESR is a relatively new activity. The underlying assumption of ESR is that important elements in
education do not have simple additive effects. Providing a better textbook will not necessarily
improve student attainment unless teachers know how to use the new text; introducing a
standards-based curriculum will not necessarily improve attainment unless teachers and the
community understand and value the standards.

The theory that underpins ESR makes a number of assumptions:

+ no education system should be viewed as a set of independent elements;
+ all the elements of an education system (such as texts, teacher competencies, school-

community relations, state policies, and the actions of different funding agencies) should be
seen as interdependent elements of a “system”;

+ changing a single element is unlikely to result in changes in the performance of the overall
system;

+ if educational reform is to be effective, a concerted effort is needed which changes several
elements in unison, and in such a way that their effects’are compatible and mutually
supportive.

For any particular attempt at ESR (such as a specific statewide systemic initiative) to be
successful, it is necessary to understand the elements in the current system and their
interconnections. On the basis of this understanding, changes can be planned that take into
account the mutual effects of interacting elements. Feedback will be necessary to see how well
plans have been implemented and to monitor the successes of these plans. Some summative
feedback will be necessary to judge the success of the whole initiative.

Evaluation is concerned with determining the value and worth of something. A useful distinction
can be made between the evaluation of plans, formative evaluation, and summative evaluation
(Stevens, Lawrenz, & Sharp, 1993). In contexts such as evaluating the impact of a new
curriculum on student attainment, or a program to increase minority students’ and women’s
enrollment in science, mathematics, and engineering courses, the evaluation community has a
number of techniques that can be applied routinely. For example, an evaluator might start by
eliciting the aims and objectives of the program, then derive relevant measures of performance,
and then identify suitable benchmarks against which to judge the success of the new program.
Although considerable intellectual effort is required to get the details right, the process itself is
unproblematic, because evaluators have a considerable body of knowledge to draw upon.



The evaluation of ESR is a relatively new challenge. Some aspects of evaluation, such as
summative evaluation, might be seen as unproblematic. A particular Systemic Initiative (SI)
might be viewed as a “treatment” that can be compared with other treatments or with no
treatment at all. However, summative evaluation of ESR is difficult for a number of reasons.
Educational goals have changed to reflect new standards, and measuring the attainment of these
new goals is difficult (Ridgway, 1998; Zawojewski, Hoover, & Ridgway, 1997). There are
conceptual issues related to the attribution of the cause of changes that are detected; there are
technical issues about the appropriateness of many research methods for determining change
(Manski,  1995); and there are practical issues such as the time frame over which one might
expect to see some change. The evaluation of plans and the provision of formative feedback in
the context of ESR raises even more difficult problems than does summative evaluation (Heck &
Webb, 1998; Webb, 199’7). They both take the evaluator into unknown territory. Rather little is
known about how to evaluate plans for ESR or about how to describe systems that are
undergoing change in such a way as to inform directors of ESR on possible effective courses of
remedial action.

Education is not alone in facing “systems problems.” A number of other disciplines tackle the
problem of trying to change complex systems in particular ways. Medicine and ecology, for
example, both deal with systems characterized by a large number of interacting variables that
change over time, which are subject to outside influences, and where there are time lags
between actions and observable effects. It makes sense to look to these disciplines to see how
they conceptualize their subject matter, how they describe systems and systems undergoing
change, and to consider the role evaluation has in managing complex systems.

The focus of this monograph is to explore the evidence bases, models and research styles used
in a range of disciplines in order to inform the development of methods for evaluating education
systems.

Science and Social Policy

Shakley and Wynne (1996) offer a fascinating account of the conflicts that scientists face when
they enter the arena of public policy. The dilemmas arise because of a clash between two
cultures. In the scientific world, it is legitimate to confess ignorance and to announce time lines
measured in decades before knowledge will be available. In contrast, in the political domain,
leaders are expected to solve problems or at least to be active in solving them within the span of
their term of office. Any scientist who enters the public domain has to reconcile these
conflicting positions.

Shakley and Wynne (1996) describe a number of relationships that can exist between scientists
and policymakers and identify the following styles:

+ the “monastery” model, where the scientific community is supported by the community
around it and is expected to contribute to the spiritual well-being of everyone in the
community (and not lmuch  else);
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+ the “attic” model, where the scientific store is sufficiently full so that a policy request can be
addressed by getting groups of scientists to hunt around in what is already known to find a
solution;

+ the “gopher” model, .where  a (seemingly) researchable question is identified, relevant to
policy, and scientists set off to find the answer;

+ the “abracadabra” model, where the policy issue is so pressing that a new branch of science
has to be invented.

Clearly, this simple classification system does violence to the spectrum of policy-oriented
research activities that can be conducted; nevertheless, it makes some useful distinctions. It is
interesting to speculate on the focus of some of the components of educational research within
this framework. Any academic community can exist using the monastery model. The monastery
model requires no engagement with practical problems, and so the issue of evaluation does not
arise. The attic model works well when the task is to generalize from one well-understood
situation to another. Educational researchers and teachers have a great wealth of craft skills that
can be generalized from one situation to another situation that closely resembles it. For the attic
model, the existence of an appropriate body of knowledge means that evaluation methods are
likely to be available, or very easy to construct, because scientists are working from what is
already well known. Education Systemic Reform (ESR) is a new venture for educators and is
likely to be an example of either the gopher or the abracadabra model. Similarly, the field of
evaluation of ESR is also likely to be an example of either the gopher or the abracadabra model.

It is important to distinguish between the evaluation of an individual systemic initiative (SI)  and
the evaluation of ESR. The evaluation of an SI will need to ask:

+ Is the plan for the SI “‘systemic”?
+ Is the implementation of the SI “systemic”?
+ Has the SI been a success?

The last question-which addresses the success of the S&--can  be seen as gopher research. An
SI can have well-defined goals, specified in terms of student outcomes, and evaluators can have
a variety of methods to judge how well these goals have been met. Even so, there are conceptual
problems in attributing clhanges  in student performance to the activities of the SI, rather than to
other causes. These problems are discussed at length by Manski (1995),  but are beyond the
scope of this monograph..

The answers to the first two questions depend on a view of systemic reform and so must be
related to some theory of ESR. Theories differ in terms of the assumptions they make, the
representations they use, and the sorts of evidence they consider. A theory of ESR might be cast
in any one of a number of distinct theoretical frameworks. It is important for evaluators of SIs  to
be familiar with a variety of theoretical styles in order to contextualize  particular approaches
and to help frame appropriate questions for evaluation. It may well be the case that a particular
SI has a theory of ESR that is quite inadequate and that will doom the SI to failure.



The evaluation of ESR as a whole is even more problematic. ESR is a theory of change. A
thorough evaluation of ESR must evaluate the theory along with judging the reform. One might
evaluate a theory by asking:

+ What body of knowledge does it summarize?
+ Is it internally consistent as a theory?
+ What predictions does it make, and how do they stand up to tests?
+ How useful is the theory in guiding practice?

To answer these questions, an evaluator must have a view of the key features of the body of
knowledge, some critical flair, access to field test results, and a keen sense of whether or not
different SIs  have been implemented in systemic ways (clearly, one cannot judge the success of
a theory if the implementation of that theory has failed), and the generative value of ESR.
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Styles of Science: Evaluations of Systemic Reform Require an Appropriate Theory of
Systemic Reform

Make things as simple as possible - but no simpler.
-  Albert Einstein

Science is concerned with answering a few direct questions: about structure (what is there?);
about function (how does it work?); and about evolution (how do things change over time?).
Members of the scientific community share a number of common assumptions and approaches:
evidence should be collected systematically; evidence should be reported in such a way that
others can comment on the appropriateness of the methods used and (in many cases) can repeat
the study themselves; theories should account for the available data.

Testing any theory -  scientific or not -  can also be guided by two simple principles:

+ Is the theory internally consistent?
+ Does it fit all the evidence?

A major goal of scientific activity is to tell a story about a range of phenomena in such a way
that phenomena are neatly summarized, and in such a way that future events can be predicted,
and in a way that provides a plausible explanation for what is happening.

The first stages of exploration are likely to pay attention to phenomena-What interesting things
happen? What needs to be explored and perhaps explained?

A second stage is likely to explore effects-under what conditions do things occur? Under what
conditions can certain things be made to occur?

The discovery of effects is simplified if:

+ variables can be manipulated systematically (easy to do in school chemistry and physics, but
hard to do in astronomy and anatomy);

+ there are few interactions between variables, so that the effects of several variables acting
together can be deduced by simply adding together the effects of each one acting alone.

A third stage is likely to combine studies of effects into modeh  of data. With models of data, a
large collection of results can be summarized by a few mathematical summary statements, such
as the combined gas laws, Newton’s equations of motion, or the Lotka-Volterra model of
predator-prey relationships (e.g., Lotka, 1956).

A fourth stage involves the creation of theories-explanations of what is observed. These might
claim the existence of ob.jects  or agents that are unobservable when the theory is created, such as
electrons, viruses, or phlogiston.



Each of these stages produces things of real value to the individual and to the scientific
community. Descriptions of phenomena can be a guide to practical behavior (e.g., when the ball
game ends, traffic congestion is increased; Florida is warmer than Wisconsin in January).
Studies of effects and modeling data allow one both to summarize large quantities of
information which have been gathered, and to make predictions about future events either on the
basis of direct past observation, or on the basis of interpolation or extrapolation from existing
evidence. Theory building can lead to an understanding of phenomena, to predictions that go
beyond simple extrapolation and interpolation using existing data, and to guiding scientific and
practical endeavor.

It is useful to identify a number of distinct approaches to modeling that different scientific
communities employ in their attempts to understand the world. The choice of model is colored
by the phenomena of interest. It is also a function of scientific culture -  scientific communities
can be characterized by their topics of interest, by the range of research tools they use, and by
the sorts of models they employ.

Analytic Modeling

Analytic modeling is quite familiar to the education community. Analytic modeling depends on
experiment and quasi-experiment; some variables are controlled, others are manipulated (or
observed at different levels when manipulation is impossible), and the effects on some variable
of interest are noted. This approach is implicit in studies that depend on correlation or
regression analysis (including recent techniques such as structural equation modeling). The
approach is likely to be successful when:

+ a small number of variables is involved;
+ effects of positive and negative feedback are negligible; and
+ effects of variables can be accumulated in straightforward ways.

The gas laws provide a good example of an analytic research style and of analytic modeling.

A range of phenomena concerning the expansion of gases was noticed.
Three efsects  were described after carefully controlled experimentation. For a fixed mass of an
ideal gas:

Boyle’s law states that the volume is inversely proportional to the pressure, at a fixed
temperature; i.e., PV = constant
Charles’ law states that the volume is proportional to the temperature (in degrees
absolute), at a fixed pressure; i.e., V = T*constant
The Pressure law states that the pressure is proportional to the temperature (in degrees
absolute) at a fixed volume; i.e., P = T*constant

These three “laws” (actually, idealized generalizations from data) can be combined into a model
of data -  the ideal gas equation; i.e., PV = T*constant.
A theoretical account is offered in terms of the actions of molecules.
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Challenges to analytic modeling. Consider the second law of thermodynamics. The second law
states that entropy (i.e., uncertainty or randomness) increases over time. A classical example is a
warm drink left in a cold room. At the start, the distribution of energy can be predicted; after a
while, it cannot. The second law of thermodynamics applies to all physical systems, but is
unhelpful in understanding the thermodynamics of living systems. For example, the entropy
associated with a warm mouse in a cold room stays pretty much the same, over several hours.
Living systems are characterized by an increase in structural complexity from conception to
maturity, and (in many animals) by homeostatic feedback that maintains a relatively constant
body temperature despite heat gain from and loss to the outside. Both of these characteristics
contradict the second law of thermodynamics and show that its application is limited to physical
systems.

Systems Modeling

The underlying mechanisms for defying chaos are a blueprint for action, appropriate resources
in the environment, and a good deal of feedback. Models that use feedback and involve a large
number of variables are called “Systems” models. Systems models are far more common in
school biology than in school physics and are essential to understanding everyday problems
studied by biologists (such as enhancing plant growth) in ways that are not essential to
understanding everyday problems in physics (such as choices of bicycle gearing).

Systems approaches are useful in situations that involve feedback loops, and in situations where
a large number of variables interact in nonlinear ways. Computer-based modeling commonly is
used in systems approaches because the complexity of the interactions between elements means
that predictions about future behavior in the model can only be made using computers, which
bear the computational load. Examples are simulations of power stations, of the economy, and
of world weather. The elements (e.g., the furnace, generator, valves, fuel supply, in the case of a
power station) are relatively stable over time, but the state of the system can change a good deal.
In terms of a theoretical account of any system, one needs to specify the elements of the system,
the functional links among the elements, and the levels of particular resources.

Predator-prey relationships provide a simple example of a dynamic system. The phenomena are
the large swings in sizes of the hare population and the lynx population, as observed in records
of pelts kept by the Hudson Bay Company. The effects are cycles in the hare and lynx
populations, which are out of phase with each other.

A dynamic systems model (created in STELLA II from High Performance Systems) is shown in
Figure 1. This model specifies that the hare population is:

+ increased by births (births = number of hares * hare natality)
+ decreased by death (death = number of lynx * kills per lynx)







Challenges to systems modeling. Systems modeling assumes that the phenomena being studied,
the effects, and the models of data stay stable over time. If the system is modified by introducing
another element or a new relationship between existing elements, then a new model will have to
be created.

In ESR, such changes can be a major goal. For example, an SI that adopts mentor teachers, or
Web-based resources, is deliberately changing the system. In the case of Web-based resources,
the education system might be considered to change each time a significant new element is
added, such as integrating The why Files (from NISE) into science lessons, or posting new
forms of assessment for schools to download.

Systems modeling, then, is well suited to the depiction of stable systems, but not well suited to
representing systems that are undergoing changes of the sort that characterize ESR. Theoretical
models need to be developed that facilitate the description of systems undergoing change. For
the purposes of this monograph, the depiction of systems undergoing radical change will be
called macro-systemic modeling.

Macro-Systemic Modeling

The macro-systemic approach (e.g., Wilson, 1994) sets out to account for the evolution of
systems. The macro-systemic approach accepts the complexities of modeling dynamic systems,
and addresses the added challenge of describing ways in which systems themselves change over
time in terms of the elements that are added to, or that become irrelevant in, the system, and in
terms of the changes in the functional relationships between elements.

Consider the changes in the biosphere over the course of the history of the earth. In the initial
stages, the planet cooled and condensed. The early atmosphere contained large amounts of
carbon dioxide. Around 2500  million years ago, the level of oxygen began to rise (plausibly) as
the result of oxygenic photosynthesis (the conversion of water and carbon dioxide to
hydrocarbons and oxygen) by algae. Increased oxygen made it possible for other life forms to
evolve, notably the invertebrates, then fish, amphibians, reptiles, birds, and mammals. Each
stage set the scene for future development; however, the nature of that future development could
not have been predicted from one stage to another.

Another example of macro-systemic development is provided by Wilson (1994),  who describes
the evolution of the air transportation industry. In 1903, the Wright brothers built an aircraft that
flew about 100 yards. Less than 100 years later, there are systems in place that transport millions
of people around the world. The transition from the first powered aircraft to modern
transportation systems has not been an unrolling of a singlesystem; rather, it has been the
creation and recreation of new systems. Each new system developed because the previous
system set up conditions that allowed it to develop; in turn the new system makes future systems
possible. Once a new system is in place, it makes a whole new set of systems possible, which in
turn facilitate the emergence of other systems.
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Airplanes. To illustrate the differences among the three types of modeling, consider airplanes.
Analytic modeling applies to the “choice problems” of an airplane for a particular route. This
modeling usually requires listing desirable features, rating objects (airplanes) on each, and
applying some weighted combination of the ratings.

Systems modeling applies when considering the design of interacting component parts of an
airplane. For example, increasing the number of passengers to be carried has obvious effects on
the fuselage in terms of accomodating  extra seats. It has slightly less obvious effects on the
provision of “hotel” facilities such as food and restrooms, on safety provisions, and on luggage
handling. Increased weight requires increased lift, which has implications for engine and wing
design (which interact with each other). Computer models are used to map these interactions.

Learning theory

+ Analytic modeling. Skinnerian conditioning (e.g., Skinner, 1953) was explored by careful
control of situations and an exhaustive analysis of individual variables on learning
outcomes.

+ Systems modeling. Models.of memory (e.g., Baddeley, 1976) often propose a number of
discrete components such as sensory buffers, a short-term working memory store, and a long
term memory store. Different components place limits on human functioning, such as the
number of digits in an unfamiliar telephone number that can be remembered when dialing,
and the rate of learning new information.

+ Macro-systemic modeling. Piaget (1929) proposed a model where children go through a
number of distinct stages in the same order; their rate of progress is a function of the
environmental stimulation they receive, along with their genetic inheritance. The different
stages reflect qualitatively different worldviews and so correspond to macro-systemic
changes. Much of the work in the Piagetian tradition has focused on documenting these
stages. In the terms used here, the work sets out to produce a macro-systemic account
described in terms of the transitions between well-specified systems. For Vygotsky (198 l),
the course of development is less like the unfolding of a flower in response to external and
internal triggers; rather, its course of development is determined largely by the culture the
child is brought up in. So the language and the intellectual tools of a culture such as its
mathematics and science have a profound effect on the cognitive development that ensues.
Vygotsky would argue that, unless one has studied human development in a particular
culture in detail, one would not be able to predict the course of development that will take
place.

Epidemiology

+ Analytic modeling. The statistical analysis of data from drug trials models the data in terms
of additive effects and their interactions (e.g., drug or no drug; young or old persons; high or
low blood pressure; etc.).

+ Systems modeling. Analysis of the transmission of cholera requires a model of interacting
systems involving human waste, water systems, cholera itself, and public hygiene measures.
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+ Macro-systemic modeling. Analysis of public health changes might trace the introduction
and impact of measures such as sewage collection and treatment, improved nutrition, the
development of new drugs, and changes in medical provision on the health of a nation.

Ecology

+ Analytic modeling. Field trials examine the conditions that facilitate the growth of certain
plants via experimental plantings to explore the effects of shade, moisture, and soil in
carefully controlled ways.

+ Systems modeling. The predator-prey model described earlier provides an example.
+ Macro-systemic modeling. Modeling changes in ecological systems that can result from

changes in water provision, soil erosion, natural disaster, or human intervention all require
macro-systemic accounts.

Education systemic reform

+ Analytic modeling. Analytic models abound in education research. Describing the effects of
teaching interventions or the introduction of new curricula are usually explored by controlled
experiment, in order to determine the “effect size” of particular changes.

+ Systems modeling. Informal systems models can be created simply by drawing “box and
arrow” diagrams connecting elements of an educational system (teacher competence, initial
teacher education, professional development, school resources, etc.). Zucker and Shields
(1997) use an informal representation of major elements in education systems as the basis for
describing the focus of work by individual SIs.

+ Macro-systemic modeling. Macro-systemic models can be created by considering the
evolution of educational systems over time. For example, the introduction of computer-
supported learning in a school might begin with two enthusiastic geography teachers who use
departmental funds to buy computers, sensors, and software and who rewrite the geography
curriculum. It might evolve into a schoolwide system with laboratories and laptops, technical
support, and cross-curricular planning to coordinate student learning of word processing,
spreadsheets, and uses of the Web.

Although macro-systemic models relate to the evolution of systems models, the absolute time
scales need not be long. The examples of human development (say over 10 years), engineered
ecological changes such as the creation of gardens (say 2 to 200 years), and the introduction of
computer-supported learning into a school (say 5 years) show that the time scale need not be
great.

Table 2 shows that most scientific disciplines make use of each form of modeling, although the
extent to which they use formal (e.g., computer based) models differs a great deal.

In education, there are few formal systems or macro-systemic models on which to base the
planning and evaluation of systems reform. The next section considers an example of a systems

model from epidemiology and an example of a macro-systemic model from ecology. The purpose
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of these examples is to show how they might be used in ESR and to describe the uses of such
models for the purposes of evaluation.
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Looking Outside Education for Evaluation Models

If I were you, I wouldn’t start from here.
-  Lewis Carroll

There is an extensive literature on educational evaluation. Why should one look outside this
literature for new ideas? An argument can be made on a number of grounds.

First, the challenges presented by systemic reform are new, and one should not make the
assumption that assessing a new kind of educational venture can be done by a simple extension
of existing methods. This might be like applying the evaluation methods associated with
preparing athletes for the 100 meter butterfly to a “new” Olympic event such as synchronized
swimming. Many of the methods currently used to explore and evaluate issues in education are
grounded in analytic approaches that dominate education and psychology; these methods and
theories have evolved in a particular cultural setting, in response to a particular set of cultural
pressures. The dominance of analytic methods in psychology can be illustrated by the uses of
analysis of variance (ANOVA)  over the past 60 years. ANOVA  received a good deal of
attention following the publication of Fisher’s (1935) publication The Design ofExperiments.
By 1955 more than 80% of articles in four leading psychology journals used ANOVA  and
related methods for significance testing and the evaluation of hypotheses (Sterling as cited in
Girgerenzer, 1992); by the early 1990s Girgerenzer (1992) estimated that the figure was almost
100%. It can hardly be the case that almost all of the problems that psychology might address
are best studied using investigative techniques of the sort suitable for analysis of variance.
Systemic and macro-systemic models are highly relevant, but are rarely used.

A second reason to consider other disciplines is that many disciplines employ evaluation
techniques when facing essentially the same problems as those faced in education. These
problems include:

+ exploring situations where there are a large number of interacting variables that change over
time, both in terms of the variables that are relevant and in terms of their interrelations;

+ making decisions about future practices that have profound effects upon human lives; and
+ being accountable for these decisions in a very public way, and so needing not just a robust

account, but also an account that can be communicated to nonexperts who are stakeholders.

It seems reasonable to believe that one might learn something about representing and evaluating
complex evolving systems from intellectual domains such as medicine and biology, which have
already addressed such matters via systemic and macro-systemic modeling with some success.
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Characteristics of Educational Systems

Educational systems have a number of important characteristics:

Educational systems involve a large number of interacting agents and agencies.
The notion of one system is fundamentally flawed; subsystems differ in so many ways that
each needs to be modeled separately.
Educational systems are open systems; outside influences are important (e.g., political
decisions at local, state, and government levels; community concerns, via the media; client
concerns, via students, teachers, and employers).
Educational systems are loosely coupled, unlike tightly coupled systems such as those found
in the human body, or in a car, where changes in one element of the system (heart, lungs,
tires, electronics) can have dramatic and immediate effects on the functionality of the whole
system, so it is uncertain how changes in one part of a system will affect other parts.
Agents in the educational system are self aware, so ideas themselves (and the act of
evaluating) can transform the nature of the system and many of its properties.
The system is subject to great time lags in terms of educational effects, so, for example, a
decision is made to reform basic teacher education, it will take a great deal of time before the
effects will be visible in the education system.
There is no single “right” level of analysis; one can view each human as a self-contained
system or as an element within a social group, or as a member of some broad community.

If one is to look for models that might guide the evaluation of ESR, it is important to find
scientific domains that share the characteristics of education, yet which are more advanced in
terms of developmental methods and conceptual models. Two domains have been chosen as
exemplars here, namely disease control and ecology. Both share many of the characteristics of
education (although the elements in neither system, diseases or plants, are self-aware). Both are
domains where there is a great deal of human intervention in the system’s management, and this
management is effective. These two domains will be used to illustrate different lessons for
evaluation in education. A systemic model of the spread of disease is adapted from
epidemiology to illustrate the creation of simple dynamic models. A more elaborate (and less
well-specified) model is borrowed from ecology to illustrate macro-systemic modeling. In both
cases, an attempt is made to show how each model might be transferred to education. Later
sections of the paper offer an analysis of how educational evaluation might be conducted in the
intellectual traditions of both systems modeling and macro-systemic modeling.

A Systems Model from Epidemiology: The SEIR Model

The key questions to be asked of any attempt to model a system are:

+ What are the elements in the system?
+ What are the interconnections?
+ What are the functional relationships among different components of the system?
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To build and validate even simple models, one needs a theory of the underlying processes, some
reasonable estimation of the model parameters, and some evidence from realistic settings so that
the model can be tested.

A great deal of effort has been devoted to modeling (and to preventing) epidemics. The SEIR
(Susceptible, Exposed, Infectious, Recovered) model is often used as a generic starting point to
model the likely transmission rates of specific diseases. The model is expressed as a set of three
nonlinear ordinary differential equations, which are easy to simulate iteratively via computer.

Every population is composed of collections of individuals who are susceptible (that is, in
certain circumstances, they can contract the disease), who are exposed (that is, are placed in
circumstances where the contraction of the disease is likely), who are infectious (that is, when in
certain kinds of contact with others who are susceptible, are likely to infect them) or who are
recovered (that is, they have developed antibodies that render them immune to infection by the
same disease). In simple cases, the history of infection for an individual runs through each stage
in turn. Consider the simplest of epidemics such as a common cold in Wisconsin; some gross
simplifying assumptions will be made, for didactic purposes. In this society, there are public
meetings every day, and seating is allocated at random, subject to the constraint that people are
not permitted to sit next to anyone they have been seated next to before. The epidemic starts
with the arrival of Jim, who flies in from Britsville to a population that is entirely susceptible.
Assume that Jim, and each subsequently infectious person, infects two other people each day;
the number of infectious people in the population each day grows by 2,4,  8, 16,32, 64, 128,
256,512, 1024, etc., so that within 10 days there are over a thousand new infections each day, in
20 days a million, and in 30 days, a billion new infections.

The model needs to specify the recovery period (which dents the power function, above). It is
common to assume (and often true) that recovered people are no longer infectious; and, of
course, the population is finite.

An example of a computer simulation is shown in Figure 3 where it is assumed that the whole
of the susceptible population is exposed (called the Non Infected Popul in the diagram) to some
infection.

The time course of the disease is shown in Figure 4. It is characterized by little apparent
influence of the disease in its early stages, then by a dramatic rise in the number of infected
people, which declines as people recover,

Models written as programs have the virtue that all sorts of “what if?” conjectures can be
explored by changing the parameters. What if there are more contacts per infected person? What
if people are infectious even when they have recovered? What if there are subpopulations who
behave differently (e.g., consider the transmission of AIDS in male and female homosexual
communities)?
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Some diseases, like malaria, remain dormant within individuals, and can recur. Others, like
AIDS, are asymptomatic for a long time, yet are infectious (and, of course, the recovery rate is
very small). For others, like gonorrhea, no body defenses build up, and exposed individuals can
be re-infected. Each of these different diseases could be modeled by a variant of the simple EIR
model in Figure 3.

Applying the Model to Education

In the context of education, one might adapt the same mathematical model to describe the
functional form of the impact of professional development on’classroom practice. A mapping of
elements between epidemiology and education is shown below.

Epidemiology Professional Development
Susceptible Susceptible

Exposed Exposed
Infected Changed classroom behavior

Recoverd Classroom behavior relapses

A variety of versions of the model can be considered that reflect different forms of professional
development (e.g., Ridgway, 1997). Pyramid models have the same structural form as the model
in Figure 3. (Conceptually, they differ in that the nature of what is transmitted-classroom
behavior-is far more likely to suffer mutation than is a disease passed from one person to
another.) In a model to simulate change in classroom practices by teachers who attend summer
schools, there would be no effect of the Total Changed Population on the Influence Rate; and so
on. The evaluation of ESR plans (and indeed the whole engineering science of ESR) can benefit
from some direct modeling of subprocesses, such as the process of professional development.

The process of building models need not be difficult. However, difficulties do arise because of
ignorance about key features of education, such as the likelihood of changed classroom behavior
given exposure to different sorts of professional development, or the likelihood of certain kinds
of classroom practices reverting to old forms. The act of thinking about exactly what
information is essential to inform the model is an important component of evaluation and is one
of the benefits that derives from modeling activities.

Even informal systems modeling can serve a valuable role in the evaluation of SI plans. For
example, using just the simple model here, an evaluator might ask:

+ How many teachers need to change their classroom behavior?
+ What opportunities do they have to be exposed to new practices?
+ What is the probability that teachers will change their classroom behavior after exposure?
+ What is the time horizon for remission?
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The answers to many of these questions lie in the existing (analytically derived) literature that
relates to descriptions of classroom behaviors and the effectiveness of different professional
development experiences in changing classroom behavior over different periods of time.

Different gradations of formal modeling (from hand calculations to computer simulations) can
provide demonstrations that an SI plan can (or cannot) in principle have an impact on
classrooms throughout the whole system, in the time scale specified.

Comparing the Knowledge Bases in Epidemiology and Education

In modeling the epidemiology of common diseases, all the required information is available,
including:

+ a well-developed description of diseases in terms of the cycle of symptoms in humans, direct
observations of viruses or bacteria, and effective and ineffective means of transmission;

+ the “natural” time course of a disease within an individual (so “infectious periods” and
“recovery rate” can be identified);

+ reasonable estimates of the infection rate; and
+ data on the time course of diseases through populations to validate models.

To build a model of the dissemination of professional development, one needs:

+ a description of the target behaviors;
+ knowledge of the “natural” time course of skill and knowledge acquisition, and of their

breakdown;
+ reasonable estimates of the rate of change; and
+ data on the time course of the changes in classroom behavior through the population as a

whole.

Existing literature can act as a guide when evaluating SI plans. From the viewpoint of formative
evaluation, detailed studies of specific interventions on the desired classroom behaviors are
necessary to inform the model that then can be used to provide formative feedback. Again, the
purpose of systems-model-based evaluation is to predict the likely success or failure of current
practices. The features of formal models that allow “what if?” conjectures to be explored are
critical. Formal models can be used to calculate the minimum total amount of time that must be
spent on professional development, using the methods adopted by a particular SI, that will be
required to reach all the teachers in that SI, for example. This result can be used to make
judgments about the value and worth of the initiative.

Professional development has been used here to provide an example of the roles that might be
played by systems models in evaluation. Any aspect of an SI could be the focus of a systems
model, at the level of evaluating plans, or for making decisions. At present, it seems unlikely
that systems models of an entire SI would be worthwhile, because of the likely complexity of
the model and the problems of parameter estimation.
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Macro-Systemic Models from Ecology

An Introductory Analogy - Breeding Butterflies

Imagine that one faces the task of evaluating new programs designed to breed butterflies. In
order to breed butterflies, the proposer/breeder needs a detailed knowledge of the life cycle of
the butterfly. Butterflies go through a number of distinct stages -  egg to caterpillar to pupa to
butterfly. At each stage, different environments are necessary (a leaf to stick to, leaves to feed
on, twigs to hang from, environments to fly in with pollen to feed on, and places to meet fellow
butterflies). Different creature behaviors are to be expected in order to promote population
growth (sticking, browsing, hanging, feeding, and mating). What intellectual tools might benefit
the evaluator of new breeding programs? The evaluator needs:

+ a knowledge of the stages of development;
+ a knowledge of the conditions that are appropriate at each stage; and
+ ways to describe the stages, signs of development within each stage, and appropriate

environments.

Armed with this information, the evaluator can make informed judgments about:

1. Plans for breeding
+ Does the breeder have an account of the life cycle stages?
+ Are appropriate environments being created?
+ Will procedures be put in place to monitor the stages of development, to provide appropriate

environments, and to monitor them carefully?

2. Formative evaluation
At what stages are the different butterflies (how are stages conceived and described)?
Has the appropriate environment been created for each cycle of butterfly life? How is the
environment monitored and modified? How are environments conceived and described?
What is the breeder doing to discover how things can be changed to make them more
effective? What mechanisms are in place to enable the breeder to improve on current
breeding practices?

3. Summative evaluation
+ How many butterflies are produced?
+ What varieties of butterflies are produced? How can butterflies be classified?
+ How healthy are they? How can the state of health of a butterfly be determined?

It is clear that the stages of development (if they exist at all) in changing educational systems are
far harder to describe than the stages of butterfly development. Schools are unlikely to be as
similar to each other as are different kinds of butterfly. In education, the knowledge base
associated with systemic change is at an early stage of development. Information about the
cycles of change and the conditions that trigger these changes is only just beginning to emerge.
If the notion of macro-systemic change is to be taken seriously, an essential target for research
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in evaluation is the development of a knowledge base about stages of reform, critical factors in
the reform process, and the like, which will complement existing knowledge about the
evaluation of more familiar change derived from program evaluations.

Analogies with imaginary evaluations (here, butterfly breeders) can be useful for scene setting.
However, a detailed account of actual evaluation practices during a socially important macro-
systemic reform is more likely to highlight issues critical to educational evaluation.

A Detailed Example - Prairie Restoration

Aldo Leopold (1949) emphasized the importance of studying the whole ecology of a landscape:
plants, animals, and the physical setting. His pioneering work in the 1930s on prairie restoration
at the University of Wisconsin-Madison arboretum led to a rich body of knowledge about the
restoration of natural environments.

Ecology might provide some good analogies for education because the interacting elements are
themselves complex systems (e.g., an individual animal or plant can be viewed as a system in its
own right, comprising a variety of subsystems (blood circulation and systems for nutrition in
animals, food creation and fertilization in plants, for example); subsystems exist with different
degrees of coupling (such as dry soil communities, wet lands, etc.); systems are affected by
external conditions, some of which are relatively stable (such as climate and soil), and some of
which are relatively unstable (such as fire and flood); changes occur over time, sometimes via
natural shifts in environmental conditions, or sometimes via deliberate or accidental human
intervention. Research methods are well established, although models of change are poorly
developed. Nonetheless ecology has a number of key concepts and methods that can inform
practices in education for data collection, data display, and descriptions of phenomena, and for
planning, implementing, and monitoring change. Ecologists have studied a range of situations in
order to build their current state of knowledge:

+ systems in relative stasis;
+ systems that are restarted from a relatively undeveloped state (for example, after some

disaster, such as a massive flood in a canyon, that sweeps almost everything away; or after
fires, volcanoes, or nuclear testing);

+ systems undergoing change as a result of nonintentional changes (for example, in response
to changes in water provision, or nutrients, or the emergence of some new predator, e.g.,
starfish eating the coral on the Great Barrier Reef); and

+ the active management of ecosystems, both to maintain stasis (e.g., preserve wetlands) and
to create “new” (actually, often “old”) ecosystems from existing systems.

Studying Systems in Relative Stasis

Ecosystems in “relative stasis” are recognizably the same over periods of years or decades.
Ecologists have devoted a great deal of time to the detailed description of abiotic  factors
(temperature, exposure, water, nutrients, wind, and the like), and of assemblages, communities,
and guilds of plants and animals in the field. They have described in detail individual plants and
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animals (descriptions include both form and behavior) under both natural and laboratory
conditions. In addition, they have conducted controlled experiments in both the laboratory and
the field on the conditions that favor and inhibit growth.

The resulting bodies of knowledge from research on ecosystems serve a number of distinct
functions. They enable ecologists to identify certain types of communities (such as wet
grasslands, prairie, Savannah, etc.) for inventory and mapping. They show which conditions are
favorable for the growth of different plants, animals, and communities. They show which
communities of plants and animals coexist necessarily or easily. These data are useful because
they suggest some symbiotic relationships-l-for instance, between pollinating insects and plants
with flowers. They offer a view about what is common and what is rare locally, nationally, and
internationally. This knowledge is important for informing possible future actions on changes in
land uses. For example, actions that will destroy rare plant communities are viewed as having a
higher cost than actions that destroy common plant communities. This information also offers
pointers to the type of ecological systems easily recreated, given particular abiotic  factors.

Evaluators of education systems in relative stasis would find it extremely useful to have access to
information about education that is analogous to the information available to ecologists. For
example, when evaluating SI plans, useful information includes:

+ descriptions of different types of communities such as classrooms, schools, neighborhoods,
school districts, and states;

+ causal relationships between classroom practices and student attainment; and
+ identification of common and rare activities.

In the short term, this information is unlikely to be available, but developing this knowledge base
would be valuable both for evaluators and for those engaged with ESR.

Studying Systems Undergoing Change

Ecologists make detailed studies of systems undergoing change. Consider, for example, the
recolonization of desert after nuclear testing is stopped (e.g., in Nevada). A sequence of changes
can be observed:

+ blasts kill all life;
+ a year after the last blast, some spring annuals appear, such as desert pincushion and

stickleaf, from seed brought by the wind or by birds;
+ as these plants die, nutrients are added to the soil, their roots increase water retention, which

in turn reduces soil temperature, thereby changing the environment in important ways;
+ this new environment now permits other plants to grow, such as wild buckwheat and foxtail

chess.

Recovery from nuclear devastation is a dramatic example of phenomena that occur more
commonly (such as, recovery after the eruptions on Mount St. Helens). Most ecological systems
can be judged to be in a state of change, if a long enough time scale is considered. The
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community that ends the succession (for a long period of time, at least) is called the climax
community. An important lesson for education is that, over a long time scale, the same climax
community can evolve from quite different starting points.

For example, woodlands of spruce trees can derive from different initial conditions:

+ rock to lichen to meadow to aspens to spruce; or
+ pond to marsh to meadow to aspens to spruce.

The knowledge base that supports macro-systemic modeling comprises descriptions of systems
undergoing change where significant changes take place in the system itself. The knowledge
base associated with systems in relative stasis is used here, too.

The knowledge base can serve a number of different functions:

+ identifying conditions favorable to certain kinds of communities;
+ planning desirable changes;
+ implementing desirable changes; and
+ monitoring ongoing changes.

Ecological Restoration as Systemic Reform

The settlement by Europeans created marked changes in the ecology of North America. Corn
and wheat replaced prairies; cities covered plant and animal habitats; waterways were created,
and a great deal of land was drained. This pattern of increased agriculture and urbanization
reflects changes globally and is associated with a decrease in biodiversity. At the time of the
settlement of Wisconsin, about 42% of the land was covered in oak savannahs, which are areas
of scattered trees with some ground level vegetation (Kelley, 1997). Oak savannahs now
account for around 0.0 1% of land cover.

A number of initiatives are underway to recreate ecological systems in Wisconsin and elsewhere
that have been destroyed by farming or other sorts of cultivation:

+ large scale restorations of oak savannahs in arboretums and other locations;
+ prairie restoration in school grounds;
+ schemes to promote gardening with native plants; and
+ European initiatives to “decommission” agricultural land.

These initiatives have strong parallels with systemic reform in education. Each ecology provides
a classical example of “a system.” There are well-articulated views about the nature of the
changes that are sought. Deliberate attempts are made to bring about particular sorts of change.
Ecology has an advantage over education because of its “engineering base”: there are clear
descriptions of the elements in the system (plants, animals, and their behavior over their life
cycles); phenomena are well documented; the outcomes of different environmental changes can
be predicted with a reasonable degree of accuracy; techniques exist to monitor and adjust the
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course of systemic reform; and attempts at system change have a reasonable track record of
success.

Ecological management typically follows this sequence:

+ A site is analyzed via a baseline survey.
What communities have existed here before?
What is here that should be preserved?
What will have to be removed?
What could exist on this site?

+ Goals are set and plans are made.
Why does this site need renovation?
What are the new goals for the site?
Does a particularly rare species need to be preserved?
Should things that grow well locally be reestablished?

+ The biotic community is selected.
What species will be used?
What needs to be implemented in order to attain the final goal state (eg., in terms of

abiotic  factors and interim plant cornmunitites)?
+ The site is prepared.
+ The site is managed.

The attainment of goals is monitored.
Radical approaches are devised to support desirable development.

A Site analysis - Describing the current system. Different ecologists approach the problem of
classification in different ways. Some begin by identifying distinct plant communities (e.g.,
Rodwell,  1991-1995),  others by describing the abiotic  conditions that favor the growth of
individual plants. For the purposes of this analysis, the approach pioneered in Wisconsin will
be used. Natural prairies are commonly classified (e.g., Curtis, 1971) as wet, wet mesic,
mesic, dry mesic, or dry. Some species of plants are found predominantly in one sort of
environment, and not in others, while some plants can be found under a great variety of
conditions. Precise definitions of ecological systems are not always possible. For example, in
the definition of “oak Savannah” there is agreement on the nature of the tree canopy (mainly
oaks), but the nature of the ground layer is less certain, since it comprises nearly all the plant
species in the Savannah  community.

Ecologists first analyze the available land in terms of site, soil, drainage, and light. Then
they identify those families of plants and plant communities that will grow well in those
settings. Curtis (197 1)  examined the vegetation in over 1400 examples of prairie, wetland,
and forest and related species composition to environmental factors, such as the nature of
the soil (nitrogen, phosphorus, potash, pH,  moisture content, moisture retaining properties,
organic matter concentration, permeability, soil components) and local climate (e.g.,
Wisconsin mesic prairies have an average precipitation of 3 1.3”,  a growing season of 152
days, and monthly mean temperatures that range from about 16 degrees to 72 degrees
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Fahrenheit).‘Prairies develop in full sun and require at least 12 hours sunshine during the
growing period. Prairie types are determined by the qualities of the soil and by drainage.

Similar environments produce similar ecologies. Places that lie between clearly
distinguishable ecosystems are described as “tension zones” or “buffer zones.” Ecologists
have a variety of well-developed techniques for describing plant communities. These
include systematic sampling by inspecting communities lying along particular lines or by
random sampling using quadrats. These sampling methods are complemented by detailed
systems for describing exactly what is present. However, ecologists differ markedly in how
they define the variety they encounter. A description of an ecosystem is likely to require
visits many times during a year, so that changes in the plant community can be observed.

A Goal setting - Considering possible plans. An archive of knowledge developed by research
aids those interested in change. Analysis of a site using abiotic  features allows an ecologist to
identify individual plants and plant communities that could thrive and those that are unlikely
‘to succeed. Novices can easily access this knowledge. A beginner can gain a great deal of
information to identify individual plants likely to succeed in the site conditions that prevail
locally. A school interested in restoring a prairie, for example, can call upon a considerable
body of knowledge (Murray, 1993). Design work should begin by looking at natural
communities living in settings as similar to the target site as possible. Seeds for planting
should be collected from sites with conditions as similar as possible to the site to be planted.
Schools and gardeners can buy mixtures of native plants from plant collections indexed in
terms of the characteristics of the most commonly occurring local conditions.

It is important at the outset to map out the evolution of the target ecology or, in the language
of this monograph, to specify the stages of macro-systemic change. A central idea is that
certain conditions have to be created in order to allow later developments. For example, by
planting oaks at the outset, the way is paved for a Savannah  at a later time, once shade is
established.

Species selection is constrained by the site. Within these constraints, planning should
address the visibility and visual essence of different plants at different times. This will be a
function of the distribution of species. Species grow to different heights, bloom at different
times, and reach maturity over different periods of time. Schools restoring prairies are
advised to plant both fast maturing species and some slow maturing ones (Murray, 1993).

A Site preparation. “Proper preparation of your site is probably the single most important factor
in.. .success...” (Murray, 1993). This advice is based on evidence from the early days of
prairie restoration, when native plants were planted into degraded pasture. Native plants
failed to compete well with the pasture plants. A good deal of empirical work identified
plants that should be avoided, or removed if they are discovered.

A Management. Prairie plants, like most perennials, do not flower the first year they are
planted. Rather, they spend most of the first year developing a root system designed for
surviving drought. A prairie planting often does not look like a prairie until the fifth year after
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planting. A great deal depends on weather and how effectively weed competition has been
controlled.

Murray (1993) distinguishes short-term management (the first two years) and long-term
management. In the early years, the central problem is weed control. The treatments are
familiar to most gardeners. Over the longer term, different management techniques are
necessary. The central problem in the long term for marginal prairies such as those in
Wisconsin is that they revert to woodland without interventions such as burning, grazing, or
mowing. Curtis (197 1) discovered that fire was essential to the vigor and spread of prairie
plants, and that most prairie plants show significant increased blooming after fires.

Prairie management techniques include prescribed burning; controlling exotic plants and
pest plants; collecting and distributing seeds; propagating plants; and protecting sites. In
restoring prairies in school grounds, many sites are similar and have used a common set of
plants and seeds as their starting points. Nevertheless, quite different plant communities
develop; all are recognizably prairie-like, but the dominant grasses differ, as do other
ecological features (Murray, 1997, personal communication). In general, there is increasing
diversity as the prairie matures.

If the long term plan is to create Savannah, then the management activities are also
concerned with steady evaluation of the land, as well as with the establishment of a
relatively steady state.

Applying the Model to the Evaluation of ESR

The sequence of ecological management has relevance for evaluators concerned with the
evaluation of an SI plan or the evaluation of the way an SI approaches school planning. It is
worth considering each aspect in turn. The purpose of the analysis is to identify the nature of the
knowledge used to support ecological restoration in order to identify some research targets for
the evaluation community concerned with studying systemic reform in the context of ESR. The
final section of this monograph will describe ways in which the requisite knowledge base for the
evaluation of ESR might be created.

A Site analysis-Describing the current system. Schools and school systems vary in a great
many ways. Establishing ways to classify schools as alike or dissimilar on successful
educational activities poses an interesting challenge. It would be useful for an evaluator to be
able to classify a specific educational setting using a broad classificatory framework and to
make informed judgments about the likely success of the proposed set of educational
activities in that setting. Simply knowing what educational environments are common and
what activities are tolerant of a wide range of environments would be useful for both
planning and evaluation. Knowing that some kinds of activities can only take place in a
narrow range of circumstances would be powerful information for evaluators to have. It is
unlikely that precise classifications of educational communities will ever be possible. This is
not fatal to the argument-ecologists face exactly the same problems. Fuzzy knowledge can
be very useful. The scale of the research necessary to describe ecologies is impressive (see
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Curtis, 197 1; Rodwell  199 1- 1995). Similar comparable levels of investment probably are
needed to achieve similar levels of description in education. Short-cut methods that might be
suitable for short-term purposes are described in the final section of the monograph.

A Goal setting-Considering possible plans. Analysis of a site allows the ecologist to identify
those individual plants and plant communities those that could thrive and that are unlikely to
succeed. Murray (1993) recommends that prairie restorers identify sites that are as close as
possible to the target site and use them as models for their restoration. In the educational
context, this has a number of parallels. Evaluators might critique plans for SIs  by asking
about the base of evidence that justifies the proposed scheme. A good deal of evidence has
been developed by the education community on which ESR can build (e.g., Grouws, 1992).
Evaluators might review working examples established in settings that match the target
settings reasonably closely. Plans that set out to extend local good practice might be more
likely to succeed than plans that promote good practice taken from contexts that are
considerably different from local conditions.

Murray stresses the importance at the outset of mapping the evolution of the target ecology
or, in the language of this monograph, specifying the stages of macro-systemic change. A
central idea is that certain conditions have to be created in order to allow later
developments. Within the constraints imposed by the site, planning should address the
visibility and visual essence of different plants throughout the year and over the course of
the restoration. She recommends planting some fast maturing species and some slow
maturing ones. There are analogies with education. Evaluators can judge plans for macro-
systemic change conceived by an SI. Timeframes for effects of proposed interventions need
to be judged. Plans without any “fast maturing” effects are likely to be less successful than
those that include a mixture of more immediate and long term effective changes.

A Site preparation. From the early days of prairie restoration, native plants planted into
degraded pasture failed to compete well with the pasture plants. Site preparation requires
identification of plants that should be avoided and removed if they are discovered. Again,
there are useful analogies for education. Teachers are often influenced by the ways in which
they were taught. Teaching methods have often been practiced over many years, and new
approaches that are planted on top of these practices are unlikely to persist for a very long
time. Evaluators need to understand and judge how the new is to fit in with the old. It is
necessary for evaluators to check that new methods will receive appropriate resources so that
they can compete with well-established methods. They need to determine how undesirable
forms of teaching and learning will be eradicated.

A Management. Prairie plants spend most of the first year developing a root system designed
for surviving drought. A prairie planting can be rather unimpressive for as long as five years.
Murray (1993) distinguishes short-term management, over the first two years, and long-term
management. In the early years, the central problem is weed control. Over the longer term,
different management techniques such as prescribed burning, control of exotic plants and pest
plants, seed collection and distribution, plant propagation, and site protection are essential to
the vigor and spread of prairie plants. Again, there are interesting analogies with education. A
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Evaluation of ESR in education needs to consider the ESR design, the implementation and
management of ESR, and the outcomes of ESR. Successful evaluation of each of these
components of ESR needs to call upon an evidence base that is as rich as the evidence base in
epidemiology and ecology. The education community already has a considerable assembly of
evidence about the conditions of learning at the level of the individual, the classroom, and the
school. However, ESR is a new venture. Strenuous efforts are necessary to. learn as much as
possible, and as quickly as possible, so as to maximize the effectiveness of current initiatives.
The final section of the monograph offers suggestions on how an appropriate knowledge base
might be constructed.

Building the Evidence Base for the Evaluation of Systemic Reform

There is a pressing need for a research community of practitioners and academics devoted to
the evaluation of ESR that contributes to and draws upon a common pool of knowledge.
Research cultures are not set in stone. There are a number of examples of disciplines that have
emerged because of social need (e.g., statistics: Hacking, 1990) or academic need (e.g.,
molecular biology, neurophysiology, cryogenics, geophysics). People concerned with ESR
might reflect on the things that have to be put in place to establish ESR and the evaluation of
ESR as a viable academic discipline with its own distinctive features.

The underlying philosophy of ESR requires that evaluation must become an integral part of the
whole system. Evaluation must not stand apart from the activities of SIs  or ESR. The
evaluation community has an important role in assembling, acquiring and disseminating
knowledge about effective practice. (See the work of the Consortium for Policy Research in
Education (CRPE), for example, Goertz, Floden, and O’Day,  1995.) One can hardly evaluate a
plan and the techniques for managing that plan without some knowledge of what is likely to
work. Nor can one evaluate the success or failure of a course of action without some definition
of what desirable effects are, and how these desirable outcomes might be assessed. In the case
of ecology, the whole design, management, and evaluation cycle of SR is based on a great deal
of knowledge gleaned from different sources. The education community needs to continue
building a body of knowledge about the process of educational change, making extensive use
of information gathered from the evaluation community. This knowledge will complement the
large body of work that has already been conducted in educational research on processes of
learning, classroom practices, and school effectiveness.

Evaluation is not a neutral activity. The act of observing can result in profound changes in what
is being observed. For example, an interview for gathering data to evaluate the plans for an SI
might ask about aspects of ESR that the SI directors did not consider. The result of the initial
evaluation interview is likely to be a revised plan, rather than a poor score on “planning”
followed by the unfolding of a failing SI. Similarly, asking about how performance will be
measured, how feedback on progress will be obtained, and what multiplier effects will be
called upon can change the design of the SI. It follows that evaluators can serve a role in the
dissemination of information about effective SR.
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The levels of scientific knowledge described in an earlier section-phenomena, effects, models
of data, theories-provide a framework for conceptualizing different kinds of knowledge. Each
SI, past and present, can be seen as a set of educational experiments that can provide evidence
at every knowledge level. Iris Weiss (1997) offered vivid illustrations of ways in which the
knowledge accumulated by the evaluation community can be used to inform both the day-to-
day pragmatics  of change and the local theory of ESR. As this evidence accumulates and is
collated, it will be possible to offer more detailed theories of ESR, as well as techniques for the
evaluation of individual SIs  and ESR as a whole.

Describing phenomena. Each SI evaluation has collected evidence about a whole range of
phenomena related to educational change. As this evidence accumulates (e.g., Massell, Kirst,  &
Hoppe, 1997; Breckenridge, Goldstein, Zucker, & Adelman, 1996; Clune, Millar, Raizen,
Webb, Bowcock,  Britton, Gunter, & Mesquita, 1998),  the collection of examples of
phenomena will make it possible for evaluators embarking on new evaluations to identify
situations similar to the ones that they are investigating. When close matches are found,
evaluators can examine the relevant case histories for evidence about likely outcomes, to
inform the evaluation of plans and to help design formative feedback.

Discovering effects. Gathering descriptions of phenomena, along with detailed descriptions of
the circumstances under which the phenomena occurred, can provide the basis for conjectures
about effects. That is, factors that are often found together may be causally related.

Creating models of data. Modeling requires evidence about effects and some mathematical
tools. Analytic tools, such as analysis of variance and structural equation modeling, provide
relatively simple models of static data. Tools such as dynamic modeling packages provide
ways to describe data that allow complex feedback between elements.

Creating models and theories. At present, ESR has many of the hallmarks of an intellectual field
in its earliest stages of development (e.g., Knapp, 1997):

+ some definitions are absent or contradictory;
+ some ideas are conflated  (e.g., although “systemic” refers to “influencing the whole system”

it is often confused with “standards-based reform.” Logically, one could have a systemic
approach to a back-to-basics curriculum and an analytic approach to standards-based reform);

+ accounts of the elements in the system, specifications of their interconnections, or the
functional relations between pairs of variables are patchy;

+ there are few attempts at formal modeling;
+ there is little analysis of what a theoretical account might look like, or of what the appropriate

level of specificity might be; and
+ despite widespread use of the term “systemic,” there appears to be little use made of the large

literature on systems theory (e.g., Banathy, 1992; Beer, 1976; Bertalanffy, 1968; Checkland,
1981) or the literature on the management of change (e.g., Asch & Bowman, 1989; Kanter,
1984; Wilson, 1992).
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Dynamic models can be seen as theories of system change. The development of dynamic models
can help the development of the intellectual field of ESR as a whole. The creation of macro-
systemic models of change require a description of systems (for example, classrooms, or schools,
or school districts) at different times as they evolve. Any discovery of similar developmental
patterns across systems then can provide the basis for macro-systemic theories, which can guide
both the evaluation of SI designs and development.

As with any attempt to build theories, there is a need for a critical examination of the quality of
the evidence that is available. In the context of evaluating ESR, it is essential to begin with a
distinction between the intended curriculum, the implemented curriculum, and the attained
curriculum. The success of an individual SI should be judged at each of these levels. In judging
the success of the theory of ESR (whatever it might be!), one must be careful not to confuse a
barren theory with a poor implementation. It would be foolish to form a negative view of the
utility of the theory of ESR on the basis of evidence from SIs  that had failed to introduce ESR.
A related point should also be borne in mind. Because a particular theoretical approach has
been shown to be valuable in one instance, one cannot conclude that it can be easily applied
across a wide range of situations.

Michael Faraday, the nineteenth century English physicist, once claimed that there is nothing
so practical as a good theory. It also is clear that there is nothing so impractical as waiting for a
good theory before any actions are taken. Evaluation of SIs  can support the engineering of
future SIs  and can inform the development of the theory of ESR. The next section offers some
ideas about how the evaluation community can help build a knowledge base that can promote
effective ESR.

Strategies to Build the Evaluation Evidence Base

This section continues the theme of the monograph by identifying research techniques used in a
range of academic disciplines outside education. Disciplines were chosen that face problems
similar to those faced in education, notably, that the information flow is essentially infinite
compared with our ability to record and analyze. Ideas are presented in the form of strategies
that might be used to accelerate the development of the knowledge bases necessary for the
evaluation of SIs  and of ESR. Identifying people who might conduct the necessary work is not
easy. Many of the strategies require efforts that go way beyond the resources provided to
individual SIs  for evaluation. A web site that collates information from different evaluations
could provide a real service to the evaluation community. It could be used to guide the
evaluation of future SI plans and could be useful in the development of formative feedback.
Again, evaluating evidence and presenting it in a usable form are nontrivial tasks that would
require the deployment of considerable resources.

It is logically impossible to draw conclusions about the critical factors in an SI and ESR on the
basis of a single case history. Given several case histories, one can at least begin to piece a
story together. However, the multidimensionality of systems still poses major problems for
making inferences. Researchers schooled in conventional science commonly use experimental
methods where the majority of variables are held constant and the interrelations between a
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to evaluate educational effects. Humans have considerable problems in handling large numbers
of variables. One approach to the problem might be to store research results in a database that
allows a very large number of descriptors of the system and the treatment to be stored. As
individual case histories are added, the evidence will accumulate, albeit in patches. Conjectures
about critical variables, triggering thresholds, cost-effectiveness, and the like can be explored
and re-explored as more data accumulates (this strategy allows direct exploration of
phenomena and the search for effects described above). A variety of ways to present complex
data to make it more intelligible is described by Tufte (1983, 1990, 1997). Such methods are
rarely used in education and might be of value.

Strategy 1: Compare Comparable Schools and Districts

An approach to the problem of identifying effective educational treatments which avoids
statistical moderation (and the required strong assumptions) is to look for differences in
performance between individual schools, or between whole school districts, that are roughly
comparable, but have had different levels of involvement in the SI. A problem arises in
defining “roughly comparable.” One solution is to use multidimensional scaling (MDS). This is
a statistical technique rather like factor analysis, but it allows more control over the necessary
statistical assumptions. It allows a number of objects, each of which has a number of different
attributes, to be related to each other in an object space. MDS allows schools (or school
districts) to be related to each other in terms of their distance apart determined by some
combination of the attributes that are available. For example, suppose data are available on
school funding levels, some measure of family poverty, and local crime rates. A measure of
similarity between two schools can be obtained by calculating the differences on each indicator
and summing the absolute value of these differences. Distance measures can be as complex as
one chooses. Factors can be scaled, can be weighted, and can be combined in all manner of
ways. MDS can be used as a descriptive tool that facilitates the identification of “similar”
schools. The search for effects begins by exploring practices in schools that are similar in terms
of relevant descriptors, but that differ in terms of student attainment. It is clear that the measure
of “similarity” will reflect one’s theory of the key features that determine school performance.
Few people identify the gender of the head teacher as a key variable, or the local weather
conditions. More common choices might be school size, percentage of students from families
defined to be economically disadvantaged, percentage of students from different ethnic groups,
average educational attainment of parents, local crime rates, rural-urban location, poverty level,
and prior student attainment levels in SMET. Refining these implicit theories about what
makes schools similar or different will contribute to understanding more about educational
processes and educational effects. Comparing schools that are similar in terms of these
characteristics, but different in terms of student attainment, is valuable for evaluating the
design of SIs.

MDS has the potential to be a powerful technique to support forming and testing hypotheses
about ESR. Schools that seem to show considerable improvements can be judged against
schools that were comparable initially. The use of matched controls is a powerful educative
device for teachers, principals, and supervisors, as well as for evaluators. It is of little practical
help to be told that the attainment of students in inner city schools is lower than that of students

35



in middle class suburbs. This information is too coarse in grain size to be useful. Teachers can
hardly be expected to reshape their city in order to improve the educational attainment of their
students. Information about the relative attainment of students in schools that are comparable is
far more useful.

Strategy 2: Treat the Attribution of Causality Seriously

The development of a theoretical framework for interpreting educational change is critical to
success, as is amassing a large collection of results that hang together. Interventions that can be
shown to affect student outcomes provide strong evidence about causality, if these effects are
shown to be robust and unambiguous. (“I believe that A causes B. I change A in these sites,
and B changes, but changes in B hardly occur at all if nothing is done about A.“)

The problems of attributing causality using the conventional tools of social science research
discussed eloquently by Manski (1995) has been addressed by seismologists (e.g., The
Incorporated Research Institutions for Seismology, funded by NSF, www.  iris.washington.edu/)
who are concerned with monitoring seismic events to determine their likely causes. In
particular, they are interested in distinguishing among nuclear explosions, mining blasts,
earthquakes, and meteor impact. This work has achieved a new prominence with the recent
United Nations resolution to end all nuclear testing. This challenge of making plausible
inferences about the cause of some detectable change is directly analogous to the problem
faced in education, where a need is seen to distinguish between alternative possible causes.

Seismologists use a number of distinct kinds of evidence when forming judgments about
causality:
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the nature of the event, its “fingerprint” (e.g., shock waves from nuclear blasts begin with a
distinctive spike as the ground is compressed violently, followed by rapid exponential
decay; earthquakes typically begin with minor tremors that increase in strength; aftershocks
are common);
knowledge of local capability (e.g., nuclear tests are more likely in Pakistan than in
Barbados);
knowledge of local intent (e.g., a nuclear test is more likely in territory held by nations that
are not signatories to the UN resolution than in territory held by strong advocates of the
resolution);
location (e.g., a seismic event located on a French island in the Pacific Ocean is more likely
to result from a nuclear test than one located in Los Angeles); and
size of the event (e.g., seismic recordings can eliminate mining blasts as a cause of major
events; the size of the event can be used to judge the likely size of a meteor impact crater
and hence the ease which it could be found).



Other triangulating evidence includes:

+ eyewitness reports (e.g., lights in the sky before a seismic event suggest meteor impact as
the most likely cause);

+ air traffic data; and
+ evidence on the ground, such as new craters.

Seismology has a number of specific lessons for education:

+ Local intention and local capability to effect change are relevant.
6 The locus of the change is relevant-one should expect change where there has been SI

activity.
+ It may be worth looking for “fingerprints” that one associates with ESR and not with other

sorts of changes which affect education.

“Fingerprints” might be nonrandom change associated with SI sites. For example, there may be
observed change in SMET subject areas, but not in other subject areas; perhaps weaker effects
away from centers of change (e.g., as “cascade” models fail progressively).

The overall lesson from seismology is that a variety of sources of evidence needs to be brought
to bear on the problem of attributing causality. Data, such as changes in the profile of student
performance, need to be understood in the context of some interpretative framework, and
conclusions need to be drawn on the basis of plausible inferences that relate data and theory.

Strategy 3: Learn from Failures

Fast prototyping and testing is a characteristic of successful research and development
activities. For example, some research and development groups have sayings such as “ready,
fire, aim”; “fail forward”; “fail fast, fail often.”

In many areas of engineering, a great deal of effort is devoted to the study of failures of
working systems (e.g., Levy & Salvadori, 1992). Disasters involving aircraft, power stations,
bridges, cars, etc., are followed by detailed analysis and often by changes in legislation that
governs safe working practices. Specific failures often can be viewed as individual symptoms
of broader system failures (e.g., Fortune & Peters, 1995). In contrast, in education current
traditions of focusing almost entirely on positive results provide a poor strategy for
understanding the phenomena, or for theory testing and building. There is an urgent need to
learn from current failures. For example, NISE might provide a strong lead by convening a
conference on SI “effects” where participants are constrained to spend as much time describing
what they have learned from failures as they spend describing seemingly positive effects.

In the case of some NSF-funded SIs,  funding has been discontinued. It would be worth
analyzing these SIs  in some detail. If they have “failed” for reasons to do with implementation
strategy rather than outside political influences, the knowledge about these failed strategies can
be extremely valuable. Knowing what does not work can be as important as knowing what
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does work. The benefits to the evaluation community are twofold. The direct benefit comes
from the search for informative indicators. For example, what performance indicators (with
hindsight) give clear evidence that an SI is failing? The long-term benefit is a contribution to
the emerging body of knowledge about what makes for successful and unsuccessful SIs.

Strategy 4: Spend Most Time Looking at the Most Informative Evidence

In earth sciences there is a strong emphasis on the detection of big effects (e.g., volcanoes)
which is relatively easy to do. However, the study of big effects by extensive recording around
single sites is not easy to do. Clearly, one wants to focus one’s resources where they are likely
to do most good. Distributing data gathering evenly across all possible sites is unlikely to be
optimal.

Physicists face a number of problems when conducting experiments in particle physics. These
relate to the total volume of data and the rate of data flow. In a typical experiment, a beam of
particles will be directed at another beam, or at a stationery object, such as an atom. The
purpose of the experiment is to cause a collision in which interesting things happen-atoms or
particles might be split, for example. The occurrence of such events is relatively rare, so there
are considerable advantages to be gained by developing methods that allow the experimenters
to record information from a small set of events that are likely to contain interesting things. A
number of experimental methods have been designed specifically to do this. One approach is to
have detectors that record only the presence of particular particles. Another approach is to use
such detectors as triggers that switch on a broader spectrum of recording devices.

These techniques illustrate two fundamental principles of scientific work on complex systems.
First is the idea that one can best understand the dynamics of systems when they are
undergoing dramatic changes. Second is that data are essentially infinite and the sooner one can
eradicate irrelevant information from consideration the better.

The first principle suggests that detailed evaluation should be conducted on extreme cases.
These might occur “naturally,” as in the case of schools or school districts that perform
exceptionally well or exceptionally badly (as in vulcanology).  An alternative is to destablilize a
school or school district deliberately and to observe the dynamics (as in physics). This is likely
to require high levels of energy, in the form of added resources. To learn from the situation, a
good deal of instrumentation is likely to be needed. Physics offers some suggestions here, too.
One idea is to develop a set of indicators that are specialized to detect particular kinds of
events. In an educational context, these might refer to events at a variety of layers in the
system, such as changes in the behavior of school principals (e.g., fostering home-school
links), changes in classroom practices (e.g., the introduction of collaborative working groups in
science, or changes in student performance (e.g., improvements on tasks involving decimals).
Some indicators already exist, while others will need to be invented.

At the level of detecting situations that ought to be investigated further, there are two distinct
ways to acquire information. One is to locate schools that have been deemed to be failing; the
other is to use published data on student attainment, such as those provided by state tests. State
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tests can have considerable weaknesses, for current purposes. The tests may not provide
measures of academic performance that cover a broad set of SMET indicators or may not be
relevant to new standards-related goals (see Ridgeway  (1998) for a critique, and Schoenfeld,
Burkhardt, Daro, Ridgway, Schwartz, & Wilcox (eds.) for approriate resources in
mathematics). It might well be worthwhile establishing a Center (or a division within an
existing Center such as NCES) with a special responsibility for detecting educational sites
where extraordinary events are taking place.

Another useful idea that can be borrowed from physics is to make deliberate attempts to filter
events of particular interest. Here, there are analogies with classroom observations. The key is
to tailor the research instrument to study the specific phenomena of interest, such as student
teacher interaction with males and females, classroom atmosphere, metacognitive remarks, or
other occurrences. No attempt should be made to summarize “everything,” a logically
impossible task. Given the constructive nature of knowledge, new measures could be invented
ad infinitum.

Strategy 5: Search for Big Eflects,  and Disseminate Them Quickly

The most useful sort of feedback an evaluator can provide in the early phases of a program is
the rapid identification of large-scale effects. These can be large-scale effects that are positive
or that are negative. Once they have been identified, then ways of permeating (or inhibiting)
these effects throughout the system quickly can be sought. Techniques for ensuring that
treatments do not suffer from dilution or corruption are beyond the scope of this monograph,
but see Elmore  (1996).

In New York, in 1983 there were 425 deaths attributed to AIDS.  This rose steadily to 7,102
deaths in 1994. Chiasson (1997) reported that, in November 1995, deaths peaked at 20.9 per
day, yet in November 1996 the number was 10.1 deaths per day. The number began to decline
in March 1996, fell steeply over the summer and fall, and then leveled off. AIDS mortality fell
for both sexes, all races, and all ages above 24 years old. Chiasson commented that the trend
“appears to have occurred at a single moment in time starting around March 1996.” There
were about 20 deaths a day in January and February; by July they had fallen to 11.5 per day.

The new treatment is a cocktail of existing drugs that usually includes a protease  inhibitor. This
cocktail is capable of arresting virus growth in many patients and returning them to a better
state of health than they have enjoyed for several years. The treatment costs more than $10,000
per year. Chiasson attributes the decline not just to the drugs, but also to a significant injection
of funds to pay for the new treatments. In 1994, New York received $100 million through the
Ryan White Care Act, compared with $44 million in the previous year. More patients could be
treated with drugs and more patients had access to traditional treatments for the diseases that
killed AIDS patients, such as pneumonia.

New York City’s health department collects birth and death records on its own residents. In
other places, a common route is for state health departments to collect data and then pass these
data on to city health departments. News of the effectiveness of the triple drug therapy was

39



learned early in New York City, illustrating the effectiveness of fast data collection, analysis,
and dissemination.

Another example from epidemiology of rapid dissemination is provided by the Centers for
Disease Control (CDC). CDC uses a number of channels for the rapid dissemination of
information. For example, the Morbidity and Mortality Weekly Reports contains recent data on
morbidity and mortality, and a daily summary of news clippings relevant to CDC is published
and is available throughout the organization.

Strategy 6: Use Systems Models as Part of Design Evaluation

Relevant groups (states, urban areas, etc.) made bids to receive SI funding and submitted plans
for their work. Such plans can be evaluated using a systemic framework. The evaluation of
plans must address a number of key areas that relate to the “systemicness” of the plans that are
proposed. These key areas cover:

A description of the existing system:

+ human and physical systems;
+ deployment of resources (Where are existing resources being spent?);
+ demographics of students and teachers;
+ existing assessment schemes and associated performance data.

Identification of areas of current system dysfunctionality:

+ those inherited from conflicts among federal and national programs;
+ local problems.

An account of the changes proposed:

+ some schematic representation of key system functions and their interrelations;
+ a description of the intended curriculum;
+ a description of how the conceptual gaps among the intended curriculum, the implemented

curriculum, and the attained curriculum will be addressed;
+ predictions of the time scale over which different effects of the reform might be expected to

emerge (e.g., When can improvements in student performance be expected?).

An account of management issues:

+ a description of the plans for system monitoring, and the scope for corrective action.

When the amount of money being spent on each SI is compared with the amount of money
being spent on the educational system to which it is being applied, it is quite clear that the
money must be used as a catalyst, not as a primary source of energy for there to be any
significant change. It follows that SIs  should make it clear just how SI funds will be used to
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were involved in the SI. The role of the model is to support a discussion and the evolution of
ideas. It is to focus attention on the educational manipulations proposed in the plans to see
whether they are consistent with the available evidence. It is not a model in the sense of the
combined gas laws, or in the sense of SEIR in epidemiology, or in the sense of an ecologist’s
plan for prairie restoration.

One can conceive of a continuum of models that range from the SRI model (actually a useful
representation that can be the basis for eliciting models stated verbally), through the “box and
arrow” models favored by systems modelers such as Checkland (1981) and Banathy (1992),
through to fully implemented systems models such as the SEIR model from epidemiology.
Fully implemented models are challenging to create, because they require elements to be
specified, along with the connecting links, and an account of the functions that relate variables
to each other. Given the constraints on time and resources, the creation of a computer
simulation of an entire SI at a particular moment in time would be quite unrealistic, and
probably useless, given that SIs  are constantly undergoing changes. However, the act of
attempting to create partial models can serve a useful function in clarifying one’s conceptions
of the SI design.

Strategy 7: Attend to Parameter Estimation and Model Small Parts of the System

In the case of AIDS in New York, effective treatments could be repeated on each client group,
given adequate quality control in the production of the treatments. The size of the effect
appears to be dramatic. The good news for AIDS patients might not be good news for the
healthy citizens of New York, for two related reasons. First is the cost. As patients are kept
alive longer, the costs of care increase linearly with a very steep slope. Consider the crudest of
models. Drugs for one hundred AIDS patients cost $1 million per year. One year’s 3,500 saved
lives added $35 million to that year’s costs. If the trend continues, the costs will be increased
by a further $70 million in the next year. A second problem relates to epidemiology. Increasing
the number of cured patients is a good thing. Increasing the number of infectious people in the
population is not. There is an interesting set of questions about how infectious patients are on
new drug treatments and how much exposure the noninfected population suffers.

By now, evidence should be available within state SIs  both about big effects and about some of
the key parameters for modeling ESR, for example, the length of time required to produce
changes. Constance Barsky (personal communication) reports that data from the Ohio SI-
where a major goal is to help teachers incorporate significant amounts of discovery learning
into their teaching styles-suggest that science teachers needed about 120 hours of professional
development before visible differences in classroom behavior emerged after about 3 years. It is
easy to use these data to calculate the costs of going to scale (Elmore,  1996) across the state.

One need not depend on computer models for systems modeling. Weiss (1997) gives an
example of an SI whose main method of bringing about more investigative methods in
elementary science was to have practicing scientists teach demonstration lessons in class. A
total pool of 500 scientists was identified, all of whom were prepared to volunteer some of
their time, at no cost to the project. There were several thousand teachers, but no analysis had
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been done at an early stage of the success or failure of the demonstration lessons. Also, no
estimate was made of the number of visits required per teacher or the nature of the
interventions that are effective in changing teacher behavior. One does not need a full
simulation of the approach on a computer in order to decide that the model won’t work. It is
enough to do a “thought experiment” and ask about the model and its likely effectiveness to
decide that it would not produce the desired results.

Strategy 8: Construct Macro-Systemic Models

If the notion of macro-systemic change is to be treated seriously, there needs to be an active
research program that sets out to identify stages, possible transitions between stages, and the
mechanisms whereby these transitions can be brought about. From the viewpoint of evaluation,
such knowledge is important for the design of evaluation:

How is change conceived?
What stages are envisaged?
How will they be recognized?
What causal agencies will be deployed?
What tools will be used to identify the current stage of development?
What stages are found in practice?
What transitions are possible between stages?
What factors are relevant at each stage, and what precipitates the evolution of the school,
the department, and the individual teacher?
What mechanisms are in place to support a learning community (e.g. to gather evidence
about classroom effects in order to inform policy, and to inform teachers and key change
agents about what is effective)?
How will information about possible stages be disseminated?

Ridgway and Passey (1995) describe a macro-systemic model of the development of computer
use in schools. The model was derived from three sources of information: case histories of the
evolution of computer use in individual schools, aggregation of patterns across “snapshots” of
schools, and logical analysis. The model is macro-systemic because it identifies a number of
stages of development and the need for different organizational features, and different behaviors,
to be put in place at different stages. A simple representation of the model is shown in Figure 6.
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Review

This section began by drawing attention to the evidence base needed to support the reform
movement. It argued that systemic reform necessarily must include a fuller integration of
evidence from current evaluations into the processes of SR. SR is a new venture, at a relatively
early stage; a great deal of information has been gathered by different evaluators in different
places about the phenomena and the effects of different educational treatments. The evaluation
community faces challenges in assembling this distributed wisdom in such a way that it can be
shared and made useful to the community at large. Several ideas are proposed for knowledge
sharing. Some suggestions are made about how systems models and macro-systemic models
can provide intellectual frameworks to support SR.
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Concluding Remarks

This monograph has offered a classification of the approaches to modeling science in terms of
analytic, systemic, and macro-systemic styles. It has argued that the shift from an analytic style
to a systemic style in education constitutes a paradigm shift (albeit one that encompasses all that
has gone before) that is sufficiently great to justify a reconceptualization of the process of
evaluation. Systemic reform actually requires a deep analysis of the processes of macro-
systemic reform if it is to be successful. The “climax community” that matches current
educational ambitions is unlikely to be attainable from the current educational system in a single
systemic jump. Interim stages, which might have some temporary stability, need to be
considered.

Striven  (1993) argued that evaluation should be established as a transdisciplinary subject, rather
like statistics and logic. Wilson et al. (1996) argue that there is a pressing need for an intellectual
community to emerge that addresses the issues of the management and evaluation of systems
undergoing change. These views are endorsed strongly here. There is an urgent need to develop
ways to share information around the evaluation community and to support the emerging field.

This monograph set out to review disciplines outside education to look for ideas that might
inform the evaluation of systemic reform. A number of conclusions can be drawn.

1 . Systemic reform has been adopted as if it were a natural extension of existing knowledge in
education. A case is made that, while enough is known to support the design and evaluation
of each individual SI, a new general field of inquiry needs to be promoted to support the
evaluation of systemic reform in general, because of the need to treat systemic and macro-
systemic issues seriously.

2 . Educational reform should devote more attention to systems and macro-systemic modeling
since these are closer to the core ideas of systemic change. Evaluators need appropriate
methods of judging whether such models are in place and how well they have been designed
and implemented.

3 . Ecological restoration is a generic example of macro-systemic reform. The knowledge base
needed to engage in systemic reform and the evaluation of systemic reform has a parallel with
ecological restoration in terms of the need for:

+ clear definitions of desirable end points;
+ ways to describe critical aspects of educational systems;
+ knowledge of the timeline  of different sorts of development;
+ knowledge of the conditions that need to be established before certain kinds of growth

can occur;
+ knowledge of transition states that are necessary and sufficient to reach desirable end

points from particular starting points;
+ ways to recognize undesirable developments, and knowledge of how to eradicate them;
+ ways to communicate effectively to stakeholders about the time lines of macro-systemic

change.
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4 . A set of vignettes from sciences that face the same problems as those faced in education
illustrate some of the research methods that might be used to build the requisite knowledge
base. These research methods are important to construct the evidence on which the evaluation
of systemic reform (as an entire program) and systemic initiatives (as individual case studies)
can be based.

A key issue for the evaluation community is how the knowledge base relevant to research
questions is assembled, stored, and accessed by the relevant communities. There is a clear role to
be played by some coordinating group such as NISE.
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